1st Energy Tech Forum

Ανοικτή Συνάντηση για τις Ενεργειακές Τεχνολογίες και την Καινοτομία

Pilot hybrid park for thermal and electrical energy generation in the municipality of Topeiros

Pantelis N. Botsaris, Assoc. Prof. DUTh

1 April 2016, Technopoli, Gazi, Athens

 "Προώθηση της χρήσης γεωθερμικών πηγών μέσω της ανάπτυξης οδηγιών για την προώθηση της πράσινης development of operational επιχειρηματικότητας"
 "Fostering the use of low temperature geothermal sources through the exploitation guidelines and green energy solutions of enterprising"

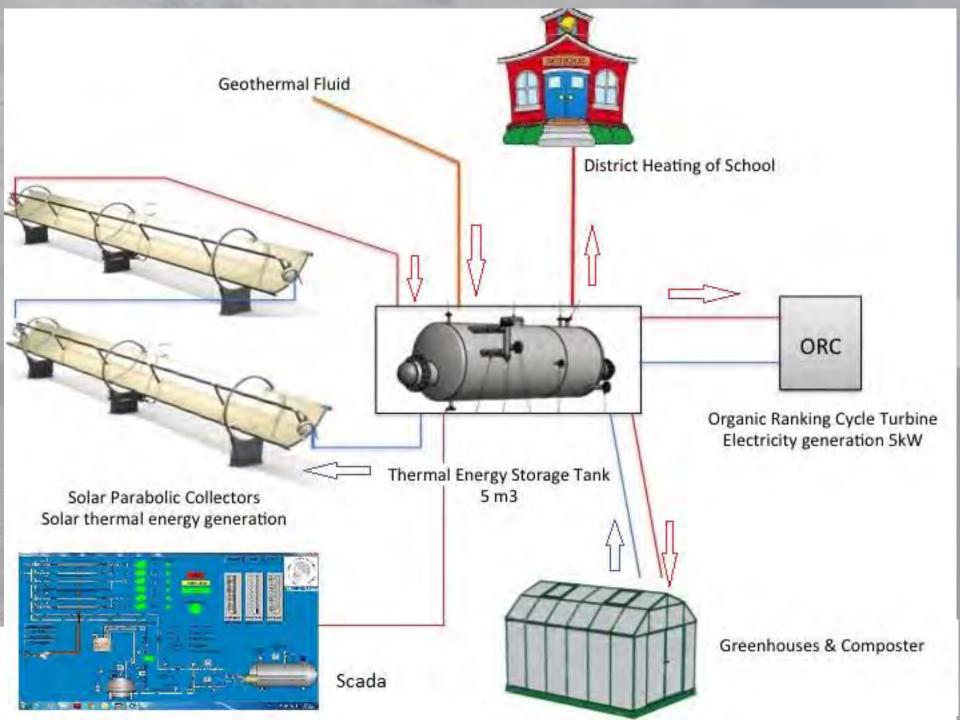
European Territorial Cooperation Programme
Greece-Bulgaria 2007-2013
INVESTING IN OUR FUTURE
Co-dended by the fursees tuber (BER)

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ

Δομή παρουσίασης

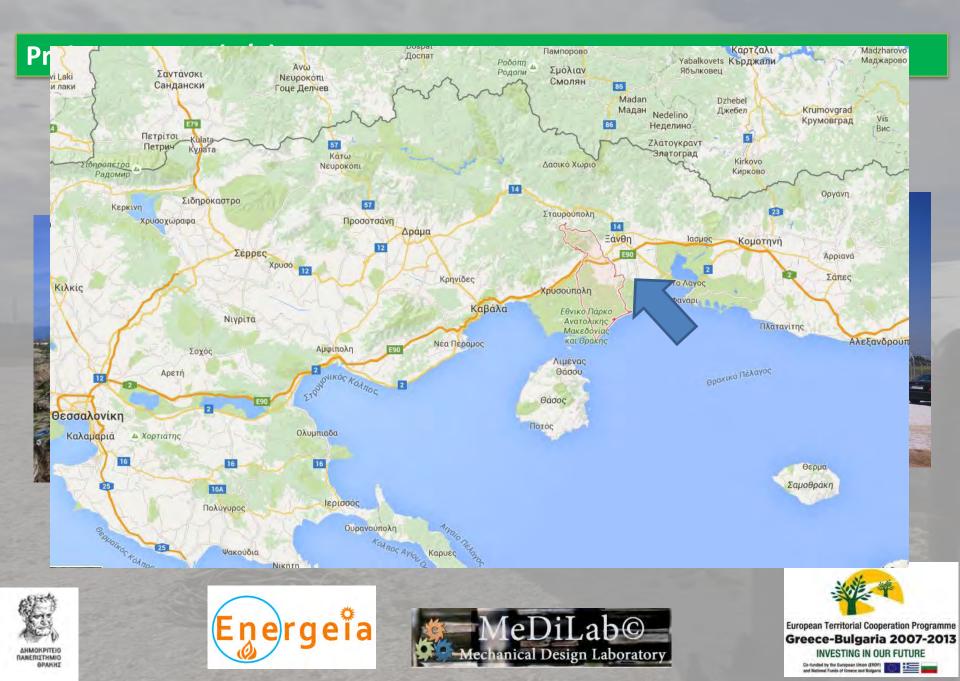
✓ Ποιοι είμαστε και τι κάναμε

- ✓ Περιγραφή-στόχοι
- Υβριδοποίηση ενεργειακών πηγών
- ✓ Στάδια κατασκευής
- Σύστημα παρακολούθησης και καταγραφής
- ✓ Το πάρκο σε αριθμούς



European Territorial Cooperation Programme Greece-Bulgaria 2007-2013 INVESTING IN OUR FUTURE Orthode by the Lunce (BPOP) ord National Other Bulgent

Description- Main Objectives


- The pilot hybrid project aims to study:
- a) the production of electric energy using Organic Rankine Cycle (ORC) engine, which will be powered by the combined operation of solar thermal and low enthalpy geothermal field (hybridization) and
- b) the simultaneous exploitation of the thermal energy produced by the combined operation of solar and geothermal system for the heating/cooling of a building (school)/process (composter) and a greenhouse unit.

Project stages.. (2/5)

• 2: Permitting

European Territorial Cooperation Programme Greece-Bulgaria 2007-2013 INVESTING IN OUR FUTURE Co-Indide to the Linear Black

Project stages.. (3/5)

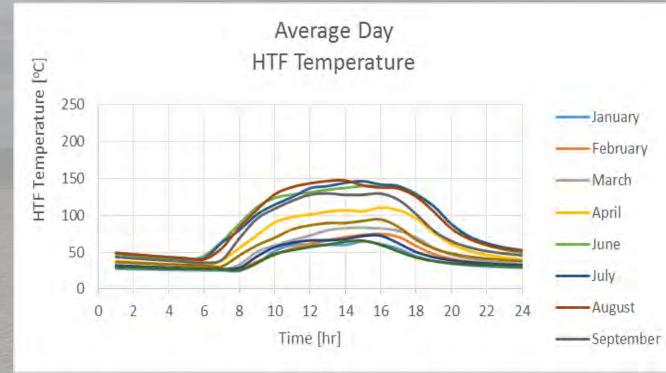
• 3: Construction

NANERIITHMIO OPAKHI

European Territorial Cooperation Programme Greece-Bulgaria 2007-2013 INVESTING IN OUR FUTURE Scholded by the Linguistic (BRON) set Nieder Under Green Bildary

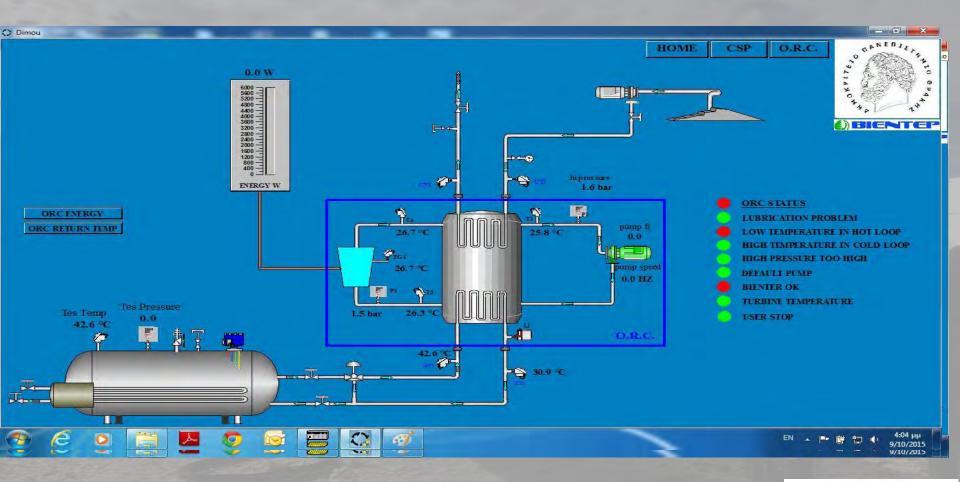
Project stages.. (4/5)

4: Commissioning •



Project stages.. (5/5)

• 5: Operational Performance


European Territorial Cooperation Programme Greece-Bulgaria 2007-2013 INVESTING IN OUR FUTURE Or hunder by the European Union (1969) Territoria Chef Chef and Unione

Scada

AHMOKPITEIO

OPAKHI

ΠΑΝΕΠΙΣΤΗΜΙΟ

Co-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

Hybridization- Υβριδοποίηση ενεργειακών πόρων

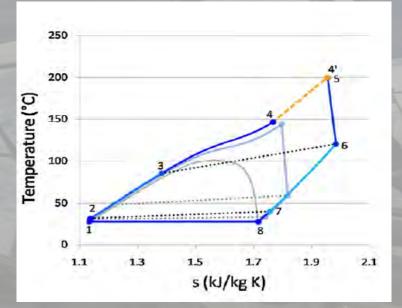
- Solar thermal (CSP) and geothermal energy generation methods utilize Rankine thermodynamic cycle. Therefore, the two energy generation technologies differ in energy input (heat collection) but share the same power output asset. It is therefore technically feasible to combine the two.
- Additionally, there is an inverse relation between the two technologies' operational efficiencies with ambient temperature. Rankine cycle geothermal power plants lose a lot of their efficiency when operating in high temperatures, such as during summer and daytime ambient temperature peaks. The base geothermal plant can produce only 60% of its peak generation during summer. Solar thermal technologies operate at peak efficiency at exactly these times when ambient temperature is highest and efficiency of geothermal plants is at their lowest.

Why?

- 1. Availability of resources
- 2. Maximizing operational efficiency
- 3. Equipment sharing
- 4. Maximizing energy generation
- 5. Financial mitigation
- 6. Ability to capture incentives

CSP's operational peaks at high ambient temperatures compensate for the loss of efficiency in the geothermal system

- A hybrid system can mitigate the high cost of solar projects with the low cost of geothermal projects
- By combining geothermal and solar technology, hybrid systems can qualify for more forms of economic support

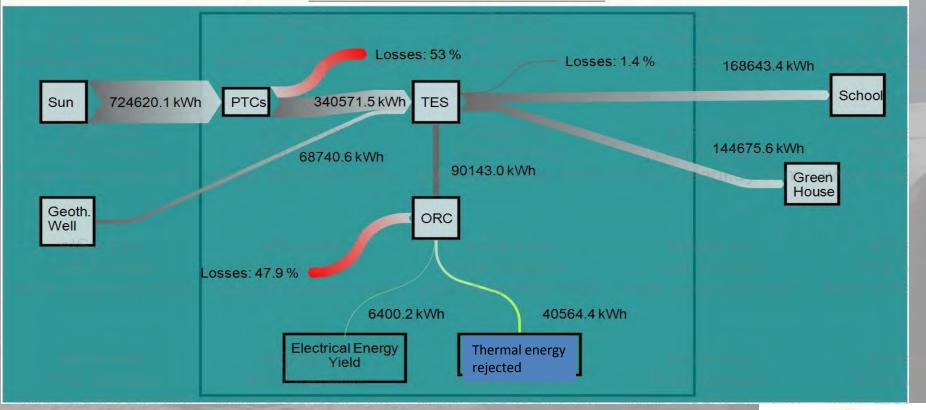


Hybridization ways

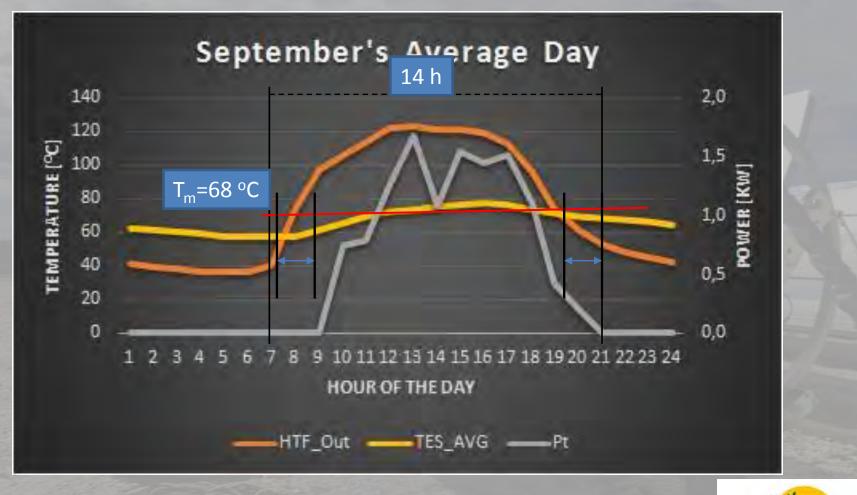
- **1. Working fluid superheat concept**
- 2. Brine preheat concept
- 3. Brine recirculation concept
- 4. Brine preheat / recirculation concept
- 5. Brine cascade reheat concept

Solar heat raises the temperature of the working fluid in a geothermal power generation cycle before it enters the turbines, resulting in higher working fluid exergy and power generation

Solar heat raises the temperature of the recirculating brine coming out of the heat exchanger to or above its original temperature and feed this to a second heat exchanger / power generation unit

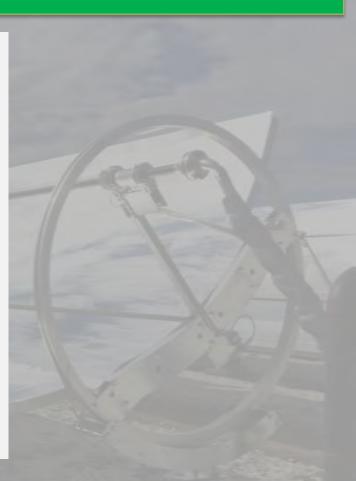


Energy flow shot (yearly)


Estimation assumptions: solar radiation 1603 kWh/m²/y, PTCs area 450 m², PTCs efficiency 47%, geothermal well (w.h. 1500, q=8 m³/h, ΔT=5 °C), school (w.h. 2121, q=2 m³/h, ΔT=45 °C), greenhouse 814 MJ/ m²/y, ORC (w.h. 992, q=2 m³/h, ΔT=40 °C)

Hybrid Solar Thermal Park

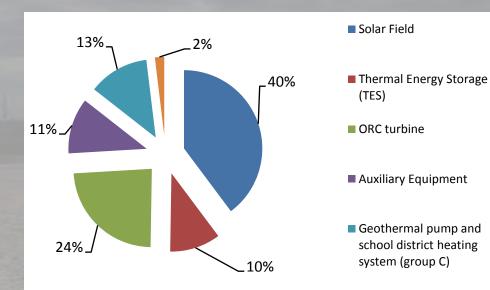
Operational Performance (a day shot)

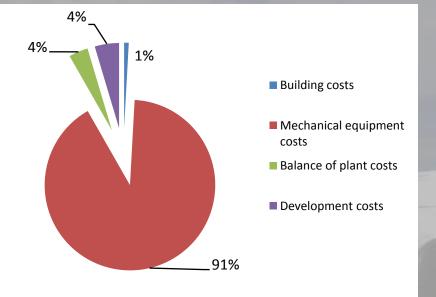


The park with numbers

Project Name	ENERGEIA	
Site Location	GREECE	
Solar Collectors	Rackam s20	
ORC turbine	ENOGIA 10kWe	

Project Size and Performance	Units	Input Value
Nominal thermal power of solar collector	kWth	39
Number of solar collectors installed	-	6
Total nominal thermal power of solar collectors	kWth	234
Solar collectors net area	m2	75,36
Total solar collectors net area	m2	452,16
Energy received (solar irradiation)	KWh/m2/year	1603
Overall system efficiency	%	47%
Solar thermal energy generated	kWth	340.571,50
Thermal energy used for electricity generation	kWth	90.143,00
Geothermal energy consumed	kWth	68.741,00
Production of total thermal energy (ex. Elec.)	kWhth	319.169,50
ORC net power	kWel	5,00
ORC efficiency	%	6,8%
Electrical energy generated by ORC	kWhel	6.400,00
Project Useful Life	years	20





Capital Cost Breakdown

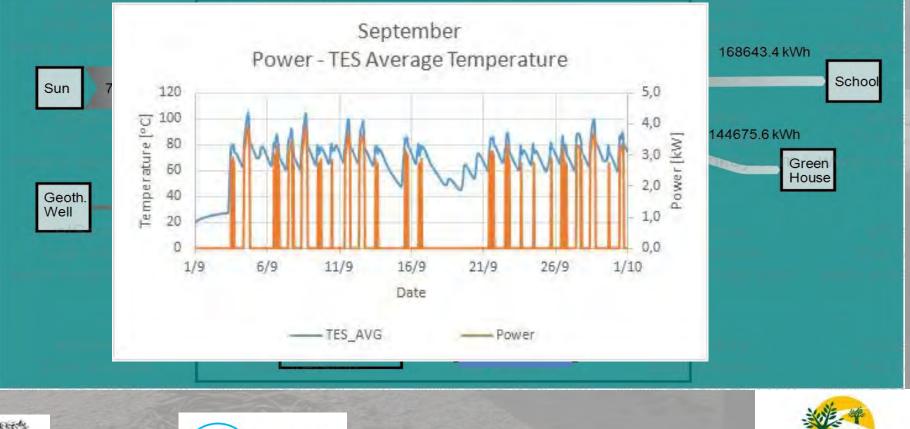
Capital Cost Breakdown

Hybrid Solar Geothermal Capital Cost Breakdown

	Without	With
Cost Assumptions	Storage	Storage
Solar field (€/m^2)	561,9	563,16
Heat transfer fluid (HTF) system (€/kWe)	7.300	14.000
Power block (€/kWe)	15.230	21.930
Storage (€/kWhth)	0	0,55
Contingency (%)	15	15
Solar field and site (€)	254.500	321.500
HTF and Power block (€)	225.580	292.850
Storage (€)	0	67.000
Buildings cost (€)	5.600	5.600
Mechanical Equipment (incl. electr) (€)	514.310	581.310
BOP (Balance of Plant) (€)	23.300	23.300
Development Cost (€)	29.500	29.500
Total Cost (€/kW)	2.228,44	2.489,14

Specific implementation cost of main equipment of hybrid park

	Specific cost	
Main equipment	(€/kW _{th})	
Solar field	716,90	
ORC turbine	429,01	
Thermal Energy Storage (TES)	188,73	
Auxiliary equipment	207,18	



) HE 🚃

Co-funded by the European Union (ERDF) and National Funds of Greece and Bulgaria

Further work

Hybrid Solar Thermal Park

ANERISTHMIO OPAKHI

 P.N. Botsaris, K. Limperopoulos, A. Pechtelidis, "Installation and operation of a pilot hybrid park utilizing solar parabolic collectors and geothermal energy", 5th International Conference on Renewable Energy Sources and Efficiency-New challenges, 5-6 May, 2016, Nicosia, Cyprus.

European Territorial Cooperation Programme Greece-Bulgaria 2007-2013 INVESTING IN OUR FUTURE Scholded by the Linear (BRON) and Nided Theor Contension Highery Territoria

Thank you for your attention.

European Territorial Cooperation Programme Greece-Bulgaria 2007-2013 INVESTING IN OUR FUTURE Schnedel by the Luncesk time (\$500) sch klader onde Greene utiligene